

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Introduction to Computation and Programming Using Python

Introduction to Python

Figure - Operators on types int and float

Figure - Flow chart for conditional statement

In Python, a conditional statement has the form
if Boolean expression:

block of code
else:

block of code
or
if Boolean expression:

block of code

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Some simple numerical programs

The code in Figure reimplements the exhaustive enumeration algorithm for finding cube roots. The break statement
in the for loop causes the loop to terminate before it has been run on each element in the sequence over which it is
iterating.

Figure - Using for and break statements

Figure contains code illustrating how to use this idea to quickly find an approximation to the square root.

Figure Implementation of Newton-Raphson method

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Functions, scoping, and abstraction

Figure - Finding an approximation to a root

Figure - Common functions for accessing files

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Structured types, mutability, and higherorder functions

Figure - Common operations on sequence types

Figure - Comparison of sequence types

Testing and debugging

Figure Program with bugs

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

This subsection contains a few pragmatic hints about what do when the debugging gets tough.

Look for the usual suspects. E.g., have you

• Passed arguments to a function in the wrong order,

• Misspelled a name, e.g., typed a lowercase letter when you should have typed an uppercase

• one,

• Failed to reinitialize a variable,

• Tested that two floating point values are equal (==) instead of nearly equal (remember that

• floating point arithmetic is not the same as the arithmetic you learned in school),

• Tested for value equality (e.g., compared two lists by writing the expression L1 == L2)

• when you meant object equality (e.g., id(L1) == id(L2)),

• Forgotten that some built-in function has a side effect,

• Forgotten the () that turns a reference to an object of type function into a function

• invocation,

• Created an unintentional alias, or

• Made any other mistake that is typical for you.

Stop asking yourself why the program isn�t doing what you want it to. Instead, ask yourself why it
is doing what it is. That should be an easier question to answer, and will probably be a good first step in

figuring out how to fix the program.
Keep in mind that the bug is probably not where you think it is. If it were, you would probably have

found it long ago. One practical way to go about deciding where to look is asking where the bug cannot be.

As Sherlock Holmes said, �Eliminate all other factors, and the one which remains must be the truth.�

Try to explain the problem to somebody else. We all develop blind spots. It is often the case that
merely attempting to explain the problem to someone will lead you to see things you have missed. A good

thing to try to explain is why the bug cannot be in certain places.

Don�t believe everything you read. In particular, don’t believe the documentation. The code may

not be doing what the comments suggest.

Stop debugging and start writing documentation. This will help you approach the problem from a
different perspective.

Walk away, and try again tomorrow. This may mean that bug is fixed later in time than if you had
stuck with it, but you will probably spend a lot less of your time looking for it. That is, it is possible to trade

latency for efficiency. (Students, this is an excellent reason to start work on programming problem sets
earlier rather than later!)

Exceptions and assertions

Figure Using exceptions for control flow

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

In many programming languages, the standard approach to dealing with errors is to have functions

return a value (often something analogous to Python’s None) indicating that something has gone amiss.

Each function invocation has to check whether that value has been returned. In Python, it is more
usual to have a function raise an exception when it cannot produce a result that is consistent with the

function�s specification.

The Python raise statement forces a specified exception to occur. The form of a raise statement is
raise exceptionName(arguments)

The exceptionName is usually one of the built-in exceptions, e.g., ValueError.

Classes and object-oriented programming

Figure Class IntSet

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

In Python, one implements data abstractions using classes. Figure contains a class definition that

provides a straightforward implementation of a set-of-integers abstraction called IntSet.
A class definition creates an object of type type and associates with that class object a set of objects

of type instancemethod. For example, the expression IntSet.insert refers to the method insert defined in

the definition of the class IntSet. And the code print(type(IntSet), type(IntSet.insert))

A simplistic introduction to algorithmic complexity

Some of the most common instances of Big O are listed below. In each case, n is a measure of the
size of the inputs to the function.

O(1) denotes constant running time.
O(log n) denotes logarithmic running time.

O(n) denotes linear running time.
O(n log n) denotes log-linear running time.

O(nk) denotes polynomial running time. Notice that k is a constant.
O(cn) denotes exponential running time. Here a constant is being

raised to a power based on the size of the input.

Some simple algorithms and data structures

Figure defines two ordering functions, and then uses these to sort a list in two different ways. Each
function uses the split method of type str.

When the code in Figure 10.6 is run, it prints

Sorted by last name = ['Tom Brady', 'Gisele
Bundchen', 'Eric Grimson']
Sorted by first name = ['Eric Grimson', 'Gisele
Bundchen', 'Tom Brady']

 Figure Sorting a list of names

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

The sorting algorithm used in most Python implementations is called timsort. The key idea is to

take advantage of the fact that in a lot of data sets the data is already partially sorted. Timsort�s worst-

case performance is the same as merge sort�s, but on average it performs considerably better.

As mentioned earlier, the Python method list.sort takes a list as its first argument and modifies that

list. In contrast, the Python function sorted takes an iterable object (e.g., a list or a view) as its first argument

and returns a new sorted list. For example, the code

L = [3,5,2]
D = {'a':12, 'c':5, 'b':'dog'}
print(sorted(L)) print(L) L.sort() print(L)
print(sorted(D)) D.sort()
will print
[2, 3, 5]
[3, 5, 2]
[2, 3, 5]
['a', 'b', 'c']
AttributeError: 'dict' object has no attribute
'sort'
Notice that when the sorted function is applied to a dictionary, it returns a sorted list of the keys of

the dictionary. In contrast, when the sort method is applied to a dictionary, it causes an exception to be

raised since there is no method dict.sort.

Plotting and more about classes

 Figure Class Mortgage with plotting methods

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Figure enhances class Mortgage by adding methods that make it convenient to produce such plots.

The nontrivial methods in class Mortgage are plotTotPd and plotNet. The method plotTotPd simply

plots the cumulative total of the payments made. The method plotNet plots an approximation to the total
cost of the mortgage over time by plotting the cash expended minus the equity acquired by paying off part

of the loan.

The expression pylab.array(self.outstanding) in the function plotNet performs a type conversion.

Thus far, we have been calling the plotting functions of PyLab with arguments of type list. Under the covers,

PyLab has been converting these lists to a different type, array, which PyLab inherits from numpy.

Knapsack and graph optimization problems

Figure Brute-force optimal solution to the 0/1 knapsack problem

Figure contains a straightforward implementation of this bruteforce approach to solving the 0/1

knapsack problem.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Dynamic programming

The code in Figure exploits the optimal substructure and overlapping subproblems to provide a

dynamic programming solution to the 0/1 knapsack problem. An extra parameter, memo, has been added

to keep track of solutions to subproblems that have already been solved. It is implemented using a dictionary

with a key constructed from the length of toConsider and the available weight. The expression

len(toConsider) is a compact way of representing the items still to be considered. This works because items

are always removed from the same end (the front) of the list toConsider.

Figure Dynamic programming solution to knapsack problem

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Random walks and more about data visualization

Figure Tracing walks

Figure Trajectory of walks

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Stochastic programs, probability, and distributions

Figure 1 contains a function, flipPlot, that produces two plots, Figure 2, intended to show the law of

large numbers at work. The first plot shows how the absolute value of the difference between the number

of heads and number of tails changes with the number of flips. The second plot compares the ratio of heads

to tails versus the number of flips. The line random.seed(0) near the bottom ensures that the pseudorandom

number generator used by random.random will generate the same sequence of pseudorandom numbers

each time this code is executed. This is convenient for debugging. The function random.seed can be called

with any number. If it is called with no argument, the seed is chosen at random.

Figure 1 Plotting the results of coin flips

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Figure 2 The law of large numbers at work

Understanding experimental data

Figure Plotting the trajectory of a projectile

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

The code in Figure was used to plot the mean altitude of the projectile in the four trials against the
distance from the point of launch.

It also plots the best linear and quadratic fits to those points. (In case you have forgotten the meaning
of multiplying a list by an integer, the expression [0]*len(distances) produces a list of len(distances) 0’s.)

Clustering

K-means clustering is probably the most widely used clustering method. Its goal is to partition a

set of examples into k clusters such that

• Each example is in the cluster whose centroid is the closest centroid to that example, and

• The dissimilarity of the set of clusters is minimized.

Figure contains a function, trykmeans, that calls kmeans multiple times and selects the result with

the lowest dissimilarity. If a trial fails because kmeans generated an empty cluster and therefore raised an

exception, trykmeans merely tries again-assuming that eventually kmeans will choose an initial set of

centroids that successfully converges.

Figure Finding the best k-means clustering

	Bookmarks

