

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Foundations of Python Network Programming

Introduction to Client-Server Networking

Google offers a geocoding service that lets programmers build a URL to which Google replies with

a JSON document describing a geographic location.

The best Python technology for quickly trying a new library: virtualenv!

Visit this URL to download and install it:

http://pypi.python.org/pypi/virtualenv

Once you have virtualenv installed, you can create a new environment using the following

commands. (On Windows, the directory containing the Python binary in the virtual environment will be

named Scripts instead of bin.)
$ virtualenv –p python3 geo_env
$ cd geo_env
$ ls
bin/ include/ lib/
$. bin/activate
$ python -c 'import pygeocoder'
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named 'pygeocoder'

To install pygeocoder, use the pip command that is inside your virtual environment that is now on

your path thanks to your having run the activate command.

$ pip install pygeocoder
Downloading/unpacking pygeocoder

Downloading pygeocoder-1.2.1.1.tar.gz
Running setup.py egg_info for package pygeocoder

Downloading/unpacking requests>=1.0 (from pygeocoder)
Downloading requests-2.0.1.tar.gz (412kB): 412kB downloaded
Running setup.py egg_info for package requests

Installing collected packages: pygeocoder, requests
Running setup.py install for pygeocoder

Running setup.py install for requests

Successfully installed pygeocoder requests
Cleaning up...

The python binary inside the virtualenv will now have the pygeocoder package available.

$ python -c 'import pygeocoder'

Now that you have the pygeocoder package installed, you should be able to run the simple program

named search1.py

And there, right on your computer screen is the answer to our question about the address’s latitude

and longitude! The answer has been pulled directly from Google’s web service.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

UDP

When you craft programs that accept port numbers from user input such as the command line or

configuration files, it is friendly to allow not just numeric port numbers but human-readable names for well-

known ports. These names are standard, and they are available through the getservbyname() function inside

Python’s standard socket module. If you want to ask the port for the Domain Name Service, you can find

out this way:

>>> import socket
>>> socket.getservbyname('domain')
53

Python’s Standard Library simply provides an object-based interface to all of the normal, gritty,

low-level operating system calls that are normally used to accomplish networking tasks on POSIX-

compliant operating systems.

Many socket options are specific to particular operating systems, and they may be finicky about

how their options are presented. Here are some of the more common options:

• SO_BROADCAST: This allows broadcast UDP packets to be sent and received.

• SO_DONTROUTE: Only be willing to send packets that are addressed to hosts on

subnets to which this computer is connected directly.

• SO_TYPE: When passed to getsockopt(), this returns to you whether a socket is of

type SOCK_DGRAM and can be used for UDP or whether it is of type SOCK_STREAM and

instead supports the semantics of TCP.

There are a few good reasons to use UDP.

• Because you are implementing a protocol that already exists and it uses UDP.

• Because you are designing a time-critical media stream whose redundancy allows

for occasional packet loss and you never want this second’s data getting hung up waiting for

old data from several seconds ago that has not yet been delivered (as happens with TCP).

• Because unreliable LAN subnet multicast is a great pattern for your application and

UDP supports it perfectly.

The POSIX network stack gives you access to UDP through the idea of a “socket,” which is a

communications endpoint that can sit at an IP address and UDP port number—these two things together

are called the socket’s name or address—and send and receive datagrams. Python offers these primitive

network operations through the built-in socket module.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

TCP

TCP basic tenets:

- Every TCP packet is given a sequence number so that the system on the receiving end can put

them back together in the right order and can also notice missing packets in the sequence and ask that they

be retransmitted.

- Instead of using sequential integers (1, 2, 3...) to sequence packets, TCP uses a counter that counts

the number of bytes transmitted. A 1,024-byte packet with a sequence number of 7,200, for example, would

be followed by a packet with a sequence number of 8,224. This means that a busy network stack does not

have to remember how it broke up a data stream into packets. If asked for a retransmission, it can break up

the stream into new packets some other way (which might let it fit more data into a packet if more bytes

are now waiting for transmission), and the receiver can still put the packets back together.

- The initial sequence number, in good TCP implementations, is chosen randomly so that villains

cannot assume that every connection starts at byte zero. Predictable sequence numbers unfortunately make

it easier to craft forged packets that might interrupt a conversation by looking like they are a legitimate part

of its data.

- Rather than running very slowly in lock step by needing every packet to be acknowledged before

it sends the next one, TCP sends whole bursts of packets at a time before expecting a response. The amount

of data that a sender is willing to have on the wire at any given moment is called the size of the TCP

window.

- The TCP implementation on the receiving end can regulate the window size of the transmitting

end and thus slow or pause the connection. This is called flow control. This lets a receiver forbid the

transmission of additional packets in cases where its input buffer is full, and it would have to discard more

data anyway even if it were to arrive.

- Finally, if TCP believes that packets are being dropped, it assumes that the network is becoming

congested and reduces how much data it sends every second. This can be something of a disaster on

wireless networks and other media where packets are lost simply because of noise. It can also ruin

connections that are running fine until a router reboots andthe endpoints cannot talk for, say, 20 seconds.

By the time the network comes back up, the two TCP peers will have decided that the network is

extraordinarily overloaded with traffic, and upon reestablishing contact, they will at first refuse to send each

other data at anything other than a trickle.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Socket Names and DNS

In Python, you can test directly for whether the underlying platform supports IPv6 by checking the

has_ipv6 Boolean attribute inside the socket module.

>>> import socket
>>> socket.has_ipv6
True

To make code simple, powerful, and immune from the complexities of the transition from IPv4 to

IPv6, should turn attention to one of the most powerful tools in the Python socket user’s arsenal:

getaddrinfo().

The getaddrinfo() function sits in the socket module along with most other operations that involve

addresses.

Its approach is simple. Rather than making attack the addressing problem piecemeal, which is

necessary when using the older routines in the socket module, it lets specify everything you know about

the connection that you need to make in a single call. In response, it returns all of the coordinates, which

are necessary for you to create and connect a socket to the named destination.

>>> from pprint import pprint
>>> infolist = socket.getaddrinfo('gatech.edu', 'www')
>>> pprint(infolist)
[(2, 1, 6, '', ('130.207.244.244', 80)),
(2, 2, 17, '', ('130.207.244.244', 80))]
>>> info = infolist[0]
>>> info[0:3]
(2, 1, 6)
>>> s = socket.socket(*info[0:3])
>>> info[4]
('130.207.244.244', 80)
>>> s.connect(info[4])

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Network Data and Network Errors

Python makes it easy to see the difference between the two endians. Simply use the struct module,

which provides a variety of operations for converting data to and from popular binary formats. Here is the

number 4253 represented first in a little-endian format and then in a big-endian order:

>>> import struct
>>> struct.pack('<i', 4253)
b'\x9d\x10\x00\x00'
>>> struct.pack('>i', 4253)
b'\x00\x00\x10\x9d'

Advice for preparing binary data for transmission across a network socket:

- Use the struct module to produce binary data for transmission on the network and to unpack it

upon arrival.

- Select network byte order with the '!' prefix if you control the data format.

- If someone else has designed the protocol and specified little-endian, then you will have to use '<'

instead.

TLS/SSL

Several open source implementations of TLS are available. The Python Standard Library opts to

wrap the most popular, the OpenSSL library.

Through its introduction of the ssl.create_default_context() function, Python 3.4 makes it

dramatically easier for Python applications to use TLS safely than did earlier versions of Python.

Here are the TLS-aware protocols that come with the Python Standard Library: (сделать слайд по

первым словам)

- http.client: When you build an HTTPSConnection object, you can use the constructor’s context

keyword to pass in an SSLContext with your own settings. Unfortunately, neither urllib.request nor the

third-party Requests library currently accept an SSLContext argument as part of their APIs.

- smtplib: When you build an SMTP_SSL object, you can use the constructor’s context keyword to

pass in an SSLContext with your own settings. If instead you create a plain SMTP object and only later call

its starttls() method, then you provide the context parameter to that method call.

- poplib: When you build a POP3_SSL object, you can use the constructor’s context keyword to

pass in an SSLContext with your own settings. If instead you create a plain POP3 object and only later call

its stls() method, then you would provide the context parameter to that method call.

- imaplib: When you build an IMAP4_SSL object, you can use the constructor’s ssl_context

keyword to pass in an SSLContext with your own settings. If instead you create a plain IMAP4 object and

only later call its starttls() method, then you would provide the ssl_context parameter to that method call.

- ftplib: When you build an FTP_TLS object, you can use the constructor’s context keyword to pass

in an SSLContext with your own settings. Note that the first line or two of the FTP conversation will always

pass in the clear (such as the “220” welcome message that often includes the server hostname) before you

have the chance to turn on encryption. An FTP_TLS object will automatically turn on encryption before

the login() method sends a username and password. If you are not logging in to the remote server but want

encryption turned on anyway, you will have to call the auth() method manually as the first action you take

after connecting.

- nntplib: Although the NNTP network news (Usenet) protocol is not covered in this book, I should

note that it too can be secured. If you build an NNTP_SSL, you can use the constructor’s ssl_context

keyword to pass in an SSLContext with your own settings. If instead you create a plain NNTP object and

only later call its starttls() method, then you would provide the context parameter to that method call.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Server Architecture

Client Program for Example Zen-of-Python Protocol

#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter07/client.py
Simple Zen-of-Python client that asks three questions then disconnects.

import argparse, random, socket, zen_utils

def client(address, cause_error=False):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(address)
aphorisms = list(zen_utils.aphorisms)
if cause_error:

sock.sendall(aphorisms[0][:-1])
return

for aphorism in random.sample(aphorisms, 3):
sock.sendall(aphorism)
print(aphorism, zen_utils.recv_until(sock, b'.'))

sock.close()

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example client')
parser.add_argument('host', help='IP or hostname')
parser.add_argument('-e', action='store_true', help='cause an error')
parser.add_argument('-p', metavar='port', type=int, default=1060,

help='TCP port (default 1060)')
args = parser.parse_args()
address = (args.host, args.p)
client(address, args.e)

The Simplest Possible Server Is Single-Threaded

#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter07/srv_single.py
Single-threaded server that serves one client at a time; others must wait.

import zen_utils

if __name__ == '__main__':
address = zen_utils.parse_command_line('simple single-threaded server')
listener = zen_utils.create_srv_socket(address)
zen_utils.accept_connections_forever(listener)

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Caches and Message Queues

Using Memcached to Accelerate an Expensive Operation

#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter08/squares.py
Using memcached to cache expensive results.

import memcache, random, time, timeit

def compute_square(mc, n):
value = mc.get('sq:%d' % n)
if value is None:

time.sleep(0.001) # pretend that computing a square is expensive
value = n * n
mc.set('sq:%d' % n, value)

return value

def main():
mc = memcache.Client(['127.0.0.1:11211'])

def make_request():
compute_square(mc, random.randint(0, 5000))

print('Ten successive runs:')
for i in range(1, 11):

print(' %.2fs' % timeit.timeit(make_request, number=2000), end='')
print()

if __name__ == '__main__':
main()

The Memcached daemon needs to be running on your machine at port 11211 for this example to

succeed.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

HTTP Clients

There is an important symmetry built into HTTP: the request and response use the same rules to

establish formatting and framing. Here is an example request and response to which you can refer as you

read the description of the protocol that follows:

GET /ip HTTP/1.1
User-Agent: curl/7.35.0
Host: localhost:8000
Accept: */*
HTTP/1.1 200 OK
Server: gunicorn/19.1.1
Date: Sat, 20 Sep 2014 00:18:00 GMT
Connection: close
Content-Type: application/json
Content-Length: 27
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
{
"origin": "127.0.0.1"
}

The request is the block of text that begins with GET. The response begins with the version

HTTP/1.1, and it continues through the blank line below the headers to include the three lines of JSON text.

Both the request and the response are called an HTTP message in the standard, and each message is

composed of three parts.

- A first line that names a method and document in the request and names a return code and

description in the response. The line ends with a carriage return and linefeed (CR-LF, ASCII codes 13 and

10).

- Zero or more headers that consist of a name, a colon, and a value. Header names are case-

insensitive, so they can be capitalized however a client or server desires. Each header ends with a CR-LF.

A blank line then terminates the entire list of headers—the four bytes CR-LF-CR-LF that form a pair of

end-of-line sequences with nothing in between them.

This blank line is mandatory whether any headers appear above it or not.

- An optional body that immediately follows the blank line that end the headers. There are several

options for framing the entity, as you will learn shortly.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

HTTP Servers

Normal, synchronous HTTP in Python is usually mediated by the WSGI standard. Servers parse the

incoming request to produce a dictionary full of information, and applications examine the dictionary before

returning HTTP headers and an optional response body. This lets you use any web server you want with

any standard Python web framework.

A Simple HTTP Service Written as a WSGI Client

#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter10/wsgi_env.py
A simple HTTP service built directly against the low-level WSGI spec.

from pprint import pformat
from wsgiref.simple_server import make_server

def app(environ, start_response):
headers = {'Content-Type': 'text/plain; charset=utf-8'}
start_response('200 OK', list(headers.items()))
yield 'Here is the WSGI environment:\r\n\r\n'.encode('utf-8')
yield pformat(environ).encode('utf-8')

if __name__ == '__main__':
httpd = make_server('', 8000, app)
host, port = httpd.socket.getsockname()
print('Serving on', host, 'port', port)
httpd.serve_forever()

Figure Four common techniques for deploying Python code stand-alone or behind reverse HTTP proxies

Four architectures are popular for serving HTTP from Python. A stand-alone server can be run using

Gunicorn or other pure-Python server implementations such as CherryPy. Other architects opt to run their

Python under the control of Apache through mod_wsgi. However, now that the concept of a reverse proxy

is a go-to pattern for web services of all kinds, many architects find it simpler to put Gunicorn or another

pure-Python server directly behind nginx or Apache as a separate HTTP service to which they can forward

requests for paths whose resources are generated dynamically.

- Run a server that is itself written in Python and that can call your WSGI endpoint directly from its

own code. The Green Unicorn (“gunicorn”) server is the most popular at the moment, but other production-

ready, pure-Python servers are available. The old battle-tested CherryPy server, for example, is still used

in projects today, and Flup still attracts users. (It is best to avoid prototype servers such as wsgiref, unless

your service will be under light load and internal to an organization.) If you use an async server engine,

then both the server and the framework will necessarily live in the same process.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

- Run Apache with mod_wsgi configured to run your Python code inside of a separate

WSGIDaemonProcess, producing a hybrid approach: two different languages are at work but within a

single server. Static resources can be served directly from Apache’s C-language engine, while dynamic

paths are submitted to mod_wsgi so that it can call the Python interpreter to run your application code.

(This option is not available for async web frameworks because WSGI provides no mechanism by which

an application could yield control temporarily and then finish its work later.)

- Run a Python HTTP server like Gunicorn (or whatever server is dictated by your choice of async

framework) behind a web server that can serve static files directly but also act a reverse proxy for the

dynamic resources that you have written in Python. Both Apache and nginx are popular front-end servers

for this task. They can also load-balance requests between several back-end servers if your Python

application outgrows a single box.

- Run a Python HTTP server behind Apache or nginx that itself sits behind a pure reverse proxy like

Varnish, creating a third tier that faces the real world. These reverse proxies can be geographically

distributed so that cached resources are served from locations close to client machines instead of all from

the same continent. Content delivery networks such as Fastly operate by deploying armies of Varnish

servers to machine rooms on each continent and then using them to offer you a turnkey service that both

terminates your externally facing TLS certificates and forwards requests to your central servers.

The World Wide Web

You can investigate how your favorite web sites package up information through two features of a

modern browser like Google Chrome or Firefox. They will show you the HTML code—syntax highlighted,

no less—for the page you are looking at if you press Ctrl+U. You can right-click any element and select

Inspect Element to bring up debugging tools that let you investigate how each document element relates to

the content that you are seeing on the page, as shown in Figure.

Figure The Inspect tab in Google Chrome

And while in the inspector, you can switch to a Network tab that will show you all of the other

resources that were downloaded and displayed as the result of visiting the page.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Building and Parsing E-Mail

Generating a Simple Text E-Mail Message

#!/usr/bin/env python3

Foundations of Python Network Programming, Third Edition

#https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter12/build_basic_email.py

import email.message, email.policy, email.utils, sys

text = """Hello,

This is a basic message from Chapter 12.

- Anonymous"""

def main():

message = email.message.EmailMessage(email.policy.SMTP)

message['To'] = 'recipient@example.com'

message['From'] = 'Test Sender <sender@example.com>'

message['Subject'] = 'Test Message, Chapter 12'

message['Date'] = email.utils.formatdate(localtime=True)

message['Message-ID'] = email.utils.make_msgid()

message.set_content(text)

sys.stdout.buffer.write(message.as_bytes())

if __name__ == '__main__':

main()

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

SMTP
SMTP is used to transmit e-mail messages to e-mail servers. Python provides the smtplib module

for SMTP clients to use. By calling the sendmail() method of SMTP objects, you can transmit messages.

ESMTP is an extension to SMTP. It allows you to discover the maximum message size supported

by a remote SMTP server prior to transmitting a message. ESMTP also permits TLS, which is a way to

encrypt your conversation with a remote server.

Figure An example of a Python-driven SMTP session

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

POP

POP, the Post Office Protocol, is a simple protocol for downloading e-mail from a server. It is

typically used through an e-mail client like Thunderbird or Outlook.

The most common implementation of POP is version 3, commonly referred to as POP3.

The Python Standard Library provides the poplib module, which provides a convenient interface

for using POP.

Figure illustrates a very simple POP conversation driven from Python.

Figure A simple conversation using POP

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

IMAP

IMAP is a robust protocol for accessing e-mail messages stored on a remote server. Many IMAP

libraries exist for Python; imaplib is built into the Python Standard Library, but it requires you to do all

sorts of low-level response parsing by yourself. A far better choice is IMAPClient by Menno Smits, which

you can install from the Python Package Index.

Figure provides a sample conversation between Python and an IMAP server.

Figure An example conversation between Python and an IMAP server

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

Telnet and SSH

 Logging Into a Remote Host Using Telnet
#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter16/telnet_login.py
Connect to localhost, watch for a login prompt, and try logging in

import argparse, getpass, telnetlib

def main(hostname, username, password):
t = telnetlib.Telnet(hostname)
t.set_debuglevel(1) # uncomment to get debug messages
t.read_until(b'login:')
t.write(username.encode('utf-8'))
t.write(b'\r')
t.read_until(b'assword:') # first letter might be 'p' or 'P'
t.write(password.encode('utf-8'))
t.write(b'\r')
n, match, previous_text = t.expect([br'Login incorrect', br'\$'], 10)
if n == 0:
print('Username and password failed - giving up')
else:
t.write(b'exec uptime\r')
print(t.read_all().decode('utf-8')) # read until socket closes

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Use Telnet to log in')
parser.add_argument('hostname', help='Remote host to telnet to')
parser.add_argument('username', help='Remote username')
args = parser.parse_args()
password = getpass.getpass('Password: ')
main(args.hostname, args.username, password)

FTP

In Python, the ftplib library is used to talk to FTP servers.

The Python module ftplib is the primary interface to FTP for Python programmers. It handles the

details of establishing the various connections for you, and it provides convenient ways to automate

common commands.

Making a Simple FTP Connection
#!/usr/bin/env python3
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter17/connect.py

from ftplib import FTP

def main():
ftp = FTP('ftp.ibiblio.org')
print("Welcome:", ftp.getwelcome())
ftp.login()
print("Current working directory:", ftp.pwd())
ftp.quit()

if __name__ == '__main__':
main()

MODERNISATION OF HIGHER EDUCATION IN CENTRAL

ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme, KA2

– Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP. It reflects the views only of

the authors, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

RPC

Making XML-RPC Calls
#!/usr/bin/env python3
-*- coding: utf-8 -*-
Foundations of Python Network Programming, Third Edition
https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter18/xmlrpc_client.py
XML-RPC client

import xmlrpc.client

def main():
proxy = xmlrpc.client.ServerProxy('http://127.0.0.1:7001')
print(proxy.addtogether('x', 'ÿ', 'z'))
print(proxy.addtogether(20, 30, 4, 1))
print(proxy.quadratic(2, -4, 0))
print(proxy.quadratic(1, 2, 1))
print(proxy.remote_repr((1, 2.0, 'three')))
print(proxy.remote_repr([1, 2.0, 'three']))
print(proxy.remote_repr({'name': 'Arthur',
'data': {'age': 42, 'sex': 'M'}}))
print(proxy.quadratic(1, 0, 1))

if __name__ == '__main__':
main()

	Bookmarks

