

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

PYTHON FOR MOBILE APPLICATION

Python for Mobile App Development

Python is getting a popular programming language day-by-day. Even some people are using
Python for Mobile App Development. Python is highly secure programming language and it also has a
lot of libraries already built, so a lot of functions do not require to be coded, and you can simply paste
the code from the library and you’re done. Moreover, Python code is platform-independent, so the
Python code can run on any platform, and that is also one of the main advantages.

Most developers use the Kivy framework to develop a mobile application using Python. With the
Kivy framework, you can build cool and intuitive frontends for your mobile application.

Kivy

Kivy - Open source Python library for rapid development of applications that make use of
innovative user interfaces, such as multi-touch apps.

Securi
ty Modulari

ty

Extensive

Libraries Easy

Integratio

Better

Productivit

Kivy is cross-platform

Custom User
Interface Toolkit

Better
consistency All-Python

Advantage

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

Kivy is a Python-based library and can be used to develop the Frontend for your app. Kivy can be
used as a Frontend library and for the backend, one can use Python. So your app is built with Python
from A to Z when you use Kivy for the frontend. Now, let’s see how the Kivy framework can be useful
for our mobile application development.

Kivy is cross-platform.
Kivy framework is cross-platform. So, one code can be used for your Android as well as the iOS

application. So, just code once, and you can use the same code in your Android and the iOS application.
Kivy reduces coding time and cost.

Custom User Interface Toolkit.
Kivy offers a custom user interface toolkit, which offers various custom text stickers, buttons,

textboxes, etc. You can develop a great and eye-pleasing UI for your app with the custom user interface
toolkit which allows us access to a lot of basic user-interface elements.

Better consistency.
When you develop your app with the Kivy framework, you get better consistency in terms of app

stability and other factors. Python-backed applications are less likely to get crashed or even get attacked
by a potential hacker. So, you get both consistency and security when you choose Python for your app
development.

All-Python Advantage.
When your app is already backed with Python and you use the Kivy framework for your

application’s frontend development, you get the “All-Python” advantage. Your backend is already secure
with Python, plus you get your frontend developed with the Kivy framework based-on Python. So, your
you can say that the app is ‘All-Python’.

Basic Kivy code

The starting Python module for all Kivy applications should be named main.py, as the build tools
you’ll use later to automate deployment to mobile devices will look for that

file. Now add a couple of lines of code to this new file, as shown in this slide.
That is it: the most basic Kivy code you could possibly write. It imports an App class, instantiates

it, and then calls the run method. Run this code by activating your Kivy environment in a terminal and
typing python main.py (or kivy main.py on Mac OS). It will pop up a blank window with a black
background.

Second code for creating a new subclass of App called WeatherApp.

KV Language

from kivy.app import App

App().run()

The most basic Kivy app

This version uses inheritance to
create a new subclass of App

called WeatherApp

from kivy.app import App

class WeatherApp(App):

 pass

if __name__ == '__main__’:

 WeatherApp().run()

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

This is a very simple KV language file that creates a new Label object and sets its text to the
infamous Hello World string. If you now run the python main.py command, you will see the window
pop up, still with a black background, but also with the text displayed in its center, as shown in this slide.

Widget

Label:

 text: "Hello World"

Simple KV language file

weather.kv

Hello World label

BoxLayout:

 Label:

 text: "Hello"

 Label:

 text: "Beautiful"

 Label:

 text: "World"

Rendering of basic container widget

Basic container
widget

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

Kivy uses the word widget to describe any user interface element. Just a few examples of widgets

include:
• The label you rendered in your application;
• The text input field and buttons you’ll render shortly;
• Layout classes that comprise other widgets and determine where they should be displayed;
• Complicated tree views such as file pickers;
• Movie and photo renderers;
• Tabbed boxes that display different widgets depending on the selected tab.
The KV language file uses indentation to indicate which “boxes” go inside other boxes. The

outermost box in a KV language file is called the root widget.
The root widget, in this case, is a BoxLayout object. Layout widgets are essentially containers

that know how to hold other widgets and position them in some way. There are three labels supplied,
indented, as children of the BoxLayout. Each of these Labels has an indented block of its own where
that widget’s properties are configured; in this example, a different value for text is supplied for each.

Adjusting Widget Size

For each type of advice, the child widget can set properties in the x dimension (horizontally) and

the y dimension (vertically). In addition, it is possible to combine the horizontal and vertical settings in
the case where you need to explicitly set both of them. This is unecessary with BoxLayout, since it
always uses maximum space in one direction, but can be useful with other layouts. Thus, there are
technically six different proportion advice properties that you can set on any given widget class:

• size_hint_x;
• size_hint_y;

Size hints

BoxLayout:
 orientation: "vertical"
 BoxLayout:
 Button:
 size_hint_x: 1
Button:
 size_hint_x: 1
Button:
 size_hint_x: 1
BoxLayout:
Button:
 size_hint_x: 1
Button:
 size_hint_x: 2
Button:
 size_hint_x: 3
BoxLayout:
Button:
 size_hint_x: 1
Button:
 size_hint_x: 0.75
Button:
 size_hint_x: 0.25

Size hints

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

• size_hint (tuple of size_hint_x, size_hint_y);
• width;
• height;
• size (tuple of width, height).
The size_hint is a proportional measure. If three widgets have the same size_hint (and the layout

chooses not to ignore that information), they will all be the same size. If one widget’s size_hint is twice
as big as another widget’s, then it will be rendered at double the size. The main thing to bear in mind is
that the size of a widget is calculated based on the sum of the size_hint values for all the widgets. A
single widget having a size_hint of 1 has no meaning unless you also know that its sibling widget has a
size_hint of 2 (the first widget will be smaller than the second) or 0.5 (the first widget will be larger).

Dictionary.com defines an event as “something that happens, especially something important.”
That’s a perfect description of events in Kivy. Kivy is firing events all the time, but you only have to pay
attention to those that you consider important. Every graphical toolkit has some concept of events. The
difference between Kivy and those other toolkits is that in Kivy, event dispatch and handling are sane
and uncomplicated.

The event handler is accessed as a property on the Button object with a prefix of on_. There are
specific types of events for different widgets; for a button, the press event is kicked off by a mouse press
or touch event. When the press event happens, the code following the colon—in this case,
root.search_location() — is executed as regular Python code.

Kivy properties are somewhat magical beings. At their most basic, they are special objects that
can be attached to widgets in the Python code and have their values accessed and set in the KV

language file. But they add a few special features.
First, Kivy properties have type-checking features. You can always be sure that a String property

does not have an integer value, for example. You can also do additional validation, like ensuring that a
number is within a specific range.

Events and Properties

Button:
text: "Search"
size_hint_x: 25
on_press:
root.search_location()

Hooking up the event handler

from kivy.properties import
ObjectProperty
class AddLocationForm(BoxLayout):
 search_input = ObjectProperty()

 def search_location(self):
 print("Explicit is better
than Implicit")

Adding a property to point at the search
input widget

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

More interestingly, Kivy properties can automatically fire events when their values change. This
can be incredibly useful, as you will see in later chapters. It’s also possible to link the value of one
property directly to the value of another property. Thus, when the bound property changes, the linked
property’s value can be updated to some value calculated from the former.

Finally, Kivy properties contain all sorts of knowledge that is very useful when you’re interfacing
between the KV language layout file and the actual Python program.

ListView Adapters

The Kivy ListView API includes full support for managing and displaying selection.
By default, the ListView renders a Label widget for each string in the list, but Label is an inert

widget that doesn’t care when it gets touched. Luckily, ListView can use different classes (including
custom classes) as the widget to be displayed for each item. Kivy supplies two classes, ListItemLabel
and ListItemButton, that behave like normal Label and Button objects but also contain information
for tracking selection. Tracking selection is mandatory for ListView widgets, so it’s almost always a
good idea to extend one of these classes, depending on whether you want to just display data (use
ListItemLabel) or respond to touch events (use ListItemButton).

Kivy Graphics

Kivy provides sophisticated graphics capabilities using OpenGL and SDL instructions. These can
be useful if you’re creating an interactive game rather than an application with widgets.

There are a few things to notice about this short snippet. Notice the canvas property. If you want
to interact with graphics primitives, you need to create instructions on a canvas. Here, you construct

#: import ListItemButton kivy.uix.listview.ListItemButton
#: import ListAdapter kivy.adapters.listadapter.ListAdapter Imports for adapter buttons

<UnknownConditions@BoxLayout>:
conditions: ""
canvas:
 Color:
 rgb: [0.2, 0.2,
0.2]
 Ellipse:

pos:
self.pos
size:
self.size

Label:
 text: root.conditions

A simple conditions widget

Your first graphics instruction

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

two instruction objects, a Color instruction and an Ellipse instruction. These have attributes such as the
RGB (red green blue) Color value and the size and position of the Ellipse.

Kivy Graphics
To use Canvas you must have to import:

from kivy.graphics import Rectangle, Color

Canvas.kv file:
<CanvasWidget@Widget>

 #creating canvas
 canvas:
 Color:
 rgba: 0, 0, 1, 1 #Blue

 #size and position of Canvas
 Rectangle:
pos: self.pos
size: self.size

Kivy is a platform independent GUI tool in Python. As it can be run on Android, IOS, linux and
Windows etc. It is basically used to develop the Android application, but it does not mean that it can not
be used on Desktops applications.

The Canvas is the root object used for drawing by a Widget. A kivy canvas is not the place where
you paint.

Each Widget in Kivy already has a Canvas by default. When you create a widget, you can create all
the instructions needed for drawing. If self is your current widget. The instructions Color and Rectangle
are automatically added to the canvas object and will be used when the window is drawn.

Animation

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

Animation and AnimationTransition are used to animate Widget properties. You must specify
at least a property name and target value. To use an Animation, follow these steps:

• Setup an Animation object;
• Use the Animation object on a Widget.

Simple animation.
To animate a Widget’s x or y position, simply specify the target x/y values where you want the

widget positioned at the end of the animation.
The animation will last for 1 second unless duration is specified. When anim.start() is called, the

Widget will move smoothly from the current x/y position to (100, 100).
Multiple properties and transitions.
You can animate multiple properties and use built-in or custom transition functions using

transition (or the t= shortcut). For example, to animate the position and size using the ‘in_quad’
transition.

Note that the t= parameter can be the string name of a method in the AnimationTransition class
or your own animation function.

Sequential animation.
To join animations sequentially, use the ‘+’ operator. The following example will animate to x=50

over 1 second, then animate the size to (80, 80) over the next two seconds.
Parallel animation.
To join animations in parallel, use the ‘&’ operator. The following example will animate the

position to (80, 10) over 1 second, whilst in parallel animating the size to (800, 800).
Keep in mind that creating overlapping animations on the same property may have unexpected

results. If you want to apply multiple animations to the same property, you should either schedule them
sequentially (via the ‘+’ operator or using the on_complete callback) or cancel previous animations
using the cancel_all method.

Repeating animation.
To set an animation to repeat, simply set the Sequence.repeat property to True.
For flow control of animations such as stopping and cancelling, use the methods already in place

in the animation module.

To use animation you must have to import:

from kivy.animation import Animation

Simple animation

anim = Animation(x=100, y=100)
anim.start(widget)

Multiple properties and transitions

anim = Animation(x=50, size=(80, 80), t='in_quad')
anim.start(widget)

Sequential animation

anim = Animation(x=50) + Animation(size=(80, 80), duration=2.)
anim.start(widget)

Parallel animation

anim = Animation(pos=(80, 10))
anim &= Animation(size=(800, 800), duration=2.)
anim.start(widget)

Repeating animation

anim = Animation(...) + Animation(...)
anim.repeat = True
anim.start(widget)

This document has been produced with the support of the EUROPEAN COMMISSION under the ERASMUS+ Programme,
KA2 – Capacity Building in the Field of Higher Education: 598092-EPP-1-2018-1-BG-EPPKA2-CBHE-SP.

It reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

MODERNISATION OF HIGHER EDUCATION IN CENTRAL
ASIA THROUGH NEW TECHNOLOGIES (HiEdTec)

Releasing to Android and iOS
Android iOS

1. Install buildozer;
2. Create the spec file;
3. Generate the APK, use the
APK file in ./bin/ folder to
install;
4. Or plug your phone,
generate and install in one go;
5. Deploy on production
environment will need to add a
sign tuso the package.

BUILDOZER 1. Install Xcode and related
SDK;
2. Install libs for building;
3. Install Cython;
4. Download kivy-ios and
install;
5. Create the Xcode project:
(your entry file must be named
as main.py)
6. You will see the a folder
named <title>-ios, open it and
open the project via
xxxxxx.xcodeproj
7. Go to apple developer
center and register as a
developer
8. Open your project settings
9. Run the project

Kivy has a custom-built deployment tool called Buildozer.
Buildozer is a tool that aim to package mobiles application easily. It automates the entire build

process, download the prerequisites like python-for-android, Android SDK, NDK, etc.
Buildozer manage a file named buildozer.spec in your application directory, describing your

application requirements and settings such as title, icon, included modules etc. It will use the
specification file to create a package for Android, iOS, and more.

Currently, Buildozer supports packaging for:
• Android: via Python for Android;
• iOS: via Kivy iOS;
• Supporting others platform is in the roadmap.

REFERENCES
1. Link: [https://yourstory.com/mystory/choose-python-mobile-app-development]
2. Creating Apps in Kivy (Mobile with Python) by Dusty Phillips
3. Link: [https://www.geeksforgeeks.org/python-canvas-in-kivy-using-kv-file/]
4. Link: [https://www.albertgao.xyz/2017/06/14/how-to-deploy-kivy-app-to-ios-and-android/]

	Bookmarks

